Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37305850

RESUMO

Aging is the largest risk factor for neurodegenerative disorders, and commonly associated with compromised cerebrovasculature and pericytes. However, we do not know how normal aging differentially impacts the vascular structure and function in different brain areas. Here we utilize mesoscale microscopy methods (serial two-photon tomography and light sheet microscopy) and in vivo imaging (wide field optical spectroscopy and two-photon imaging) to determine detailed changes in aged cerebrovascular networks. Whole-brain vascular tracing showed an overall ~10% decrease in vascular length and branching density, and light sheet imaging with 3D immunolabeling revealed increased arteriole tortuosity in aged brains. Vasculature and pericyte densities showed significant reductions in the deep cortical layers, hippocampal network, and basal forebrain areas. Moreover, in vivo imaging in awake mice identified delays in neurovascular coupling and disrupted blood oxygenation. Collectively, we uncover regional vulnerabilities of cerebrovascular network and physiological changes that can mediate cognitive decline in normal aging.

2.
Neuron ; 110(23): 3882-3896.e9, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36220098

RESUMO

Cell-surface proteins (CSPs) mediate intercellular communication throughout the lives of multicellular organisms. However, there are no generalizable methods for quantitative CSP profiling in specific cell types in vertebrate tissues. Here, we present in situ cell-surface proteome extraction by extracellular labeling (iPEEL), a proximity labeling method in mice that enables spatiotemporally precise labeling of cell-surface proteomes in a cell-type-specific environment in native tissues for discovery proteomics. Applying iPEEL to developing and mature cerebellar Purkinje cells revealed differential enrichment in CSPs with post-translational protein processing and synaptic functions in the developing and mature cell-surface proteomes, respectively. A proteome-instructed in vivo loss-of-function screen identified a critical, multifaceted role for Armh4 in Purkinje cell dendrite morphogenesis. Armh4 overexpression also disrupts dendrite morphogenesis; this effect requires its conserved cytoplasmic domain and is augmented by disrupting its endocytosis. Our results highlight the utility of CSP profiling in native mammalian tissues for identifying regulators of cell-surface signaling.


Assuntos
Mamíferos , Proteômica , Camundongos , Animais
3.
Cell Rep ; 39(12): 110978, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35732133

RESUMO

The cerebrovasculature and its mural cells must meet brain regional energy demands, but how their spatial relationship with different neuronal cell types varies across the brain remains largely unknown. Here we apply brain-wide mapping methods to comprehensively define the quantitative relationships between the cerebrovasculature, capillary pericytes, and glutamatergic and GABAergic neurons, including neuronal nitric oxide synthase-positive (nNOS+) neurons and their subtypes in adult mice. Our results show high densities of vasculature with high fluid conductance and capillary pericytes in primary motor sensory cortices compared with association cortices that show significant positive and negative correlations with energy-demanding parvalbumin+ and vasomotor nNOS+ neurons, respectively. Thalamo-striatal areas that are connected to primary motor sensory cortices also show high densities of vasculature and pericytes, suggesting dense energy support for motor sensory processing areas. Our cellular-resolution resource offers opportunities to examine spatial relationships between the cerebrovascular network and neuronal cell composition in largely understudied subcortical areas.


Assuntos
Neurônios GABAérgicos , Parvalbuminas , Animais , Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Neurônios GABAérgicos/metabolismo , Camundongos , Parvalbuminas/metabolismo , Pericitos/metabolismo
4.
Nature ; 598(7879): 159-166, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616071

RESUMO

An essential step toward understanding brain function is to establish a structural framework with cellular resolution on which multi-scale datasets spanning molecules, cells, circuits and systems can be integrated and interpreted1. Here, as part of the collaborative Brain Initiative Cell Census Network (BICCN), we derive a comprehensive cell type-based anatomical description of one exemplar brain structure, the mouse primary motor cortex, upper limb area (MOp-ul). Using genetic and viral labelling, barcoded anatomy resolved by sequencing, single-neuron reconstruction, whole-brain imaging and cloud-based neuroinformatics tools, we delineated the MOp-ul in 3D and refined its sublaminar organization. We defined around two dozen projection neuron types in the MOp-ul and derived an input-output wiring diagram, which will facilitate future analyses of motor control circuitry across molecular, cellular and system levels. This work provides a roadmap towards a comprehensive cellular-resolution description of mammalian brain architecture.


Assuntos
Córtex Motor/anatomia & histologia , Córtex Motor/citologia , Neurônios/classificação , Animais , Atlas como Assunto , Feminino , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Glutamatos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroimagem , Neurônios/citologia , Neurônios/metabolismo , Especificidade de Órgãos , Análise de Sequência de RNA , Análise de Célula Única
5.
J Neurosci ; 41(18): 3966-3987, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33731445

RESUMO

The classic basal ganglia circuit model asserts a complete segregation of the two striatal output pathways. Empirical data argue that, in addition to indirect-pathway striatal projection neurons (iSPNs), direct-pathway striatal projection neurons (dSPNs) innervate the external globus pallidus (GPe). However, the functions of the latter were not known. In this study, we interrogated the organization principles of striatopallidal projections and their roles in full-body movement in mice (both males and females). In contrast to the canonical motor-promoting response of dSPNs in the dorsomedial striatum (DMSdSPNs), optogenetic stimulation of dSPNs in the dorsolateral striatum (DLSdSPNs) suppressed locomotion. Circuit analyses revealed that dSPNs selectively target Npas1+ neurons in the GPe. In a chronic 6-hydroxydopamine lesion model of Parkinson's disease, the dSPN-Npas1+ projection was dramatically strengthened. As DLSdSPN-Npas1+ projection suppresses movement, the enhancement of this projection represents a circuit mechanism for the hypokinetic symptoms of Parkinson's disease that has not been previously considered. In sum, our results suggest that dSPN input to the GPe is a critical circuit component that is involved in the regulation of movement in both healthy and parkinsonian states.SIGNIFICANCE STATEMENT In the classic basal ganglia model, the striatum is described as a divergent structure: it controls motor and adaptive functions through two segregated, opposing output streams. However, the experimental results that show the projection from direct-pathway neurons to the external pallidum have been largely ignored. Here, we showed that this striatopallidal subpathway targets a select subset of neurons in the external pallidum and is motor-suppressing. We found that this subpathway undergoes changes in a Parkinson's disease model. In particular, our results suggest that the increase in strength of this subpathway contributes to the slowness or reduced movements observed in Parkinson's disease.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Globo Pálido/fisiologia , Neostriado/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Feminino , Globo Pálido/citologia , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Movimento/fisiologia , Neostriado/citologia , Proteínas do Tecido Nervoso/genética , Vias Neurais/citologia , Vias Neurais/fisiologia , Optogenética , Oxidopamina , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/fisiopatologia , Coelhos
6.
Neurobiol Stress ; 13: 100238, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33344694

RESUMO

Chronic stress represents a vulnerability factor for anxiety and depressive disorders and has been widely used to model aspects of these disorders in rodents. Disinhibition of somatostatin (SST)-positive GABAergic interneurons in mice by deletion of γ2 GABAA receptors selectively from these cells (SSTCre:γ2f/f mice) has been shown to result in behavioral and biochemical changes that mimic the responses to antidepressant doses of ketamine. Here we explored the extent to which SSTCre:γ2f/f mice exhibit resilience to unpredictable chronic mild stress (UCMS). We found that male SSTCre:γ2f/f mice are resilient to UCMS-induced (i) reductions in weight gain, (ii) reductions in SST-immuno-positive cells in medial prefrontal cortex (mPFC), (iii) increases in phosphorylation of eukaryotic elongation factor 2 (eEF2) in mPFC, and (iv) increased anxiety in a novelty suppressed feeding test. Female SSTCre:γ2f/f mice were resilient to UCMS-induced reductions in SST-immuno-positive cells indistinguishably from males. However, in contrast to males, they showed no UCMS effects on weight gain independent of genotype. Moreover, in mPFC of female γ2f/f control mice, UCMS resulted in paradoxically reduced p-EF2 levels without stress effects in the SSTCre:γ2f/f mutants. Lastly, female SSTCre:γ2f/f mice showed increased rather than reduced UCMS induced anxiety compared to γ2f/f controls. Thus, disinhibition of SST interneurons results in behavioral resilience to UCMS selectively in male mice, along with cellular resilience of SST neurons to UCMS independent of sex. Thus, mechanisms underlying vulnerability and resilience to stress are sex specific and map to mPFC rather than hippocampus but appear unrelated to changes in expression of SST as a marker of corresponding interneurons.

7.
Nat Commun ; 11(1): 6419, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33339823

RESUMO

RNA synthesis is central to life, and RNA polymerase (RNAP) depends on accessory factors for recovery from stalled states and adaptation to environmental changes. Here, we investigated the mechanism by which a helicase-like factor HelD recycles RNAP. We report a cryo-EM structure of a complex between the Mycobacterium smegmatis RNAP and HelD. The crescent-shaped HelD simultaneously penetrates deep into two RNAP channels that are responsible for nucleic acids binding and substrate delivery to the active site, thereby locking RNAP in an inactive state. We show that HelD prevents non-specific interactions between RNAP and DNA and dissociates stalled transcription elongation complexes. The liberated RNAP can either stay dormant, sequestered by HelD, or upon HelD release, restart transcription. Our results provide insights into the architecture and regulation of the highly medically-relevant mycobacterial transcription machinery and define HelD as a clearing factor that releases RNAP from nonfunctional complexes with nucleic acids.


Assuntos
Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Mycobacterium smegmatis/enzimologia , Ácidos Nucleicos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Domínio Catalítico , Microscopia Crioeletrônica , DNA Bacteriano/química , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/ultraestrutura , Modelos Moleculares , Ligação Proteica , Domínios Proteicos
8.
eNeuro ; 7(6)2020.
Artigo em Inglês | MEDLINE | ID: mdl-33158934

RESUMO

In the mouse brain, olfactory information is transmitted to the olfactory cortex via olfactory bulb (OB) projection neurons known as mitral and tufted cells. Although mitral and tufted cells share many cellular characteristics, these cell types are distinct in their somata location and in their axonal and dendritic projection patterns. Moreover, mitral cells consist of heterogeneous subpopulations. We have previously shown that mitral cells generated at different embryonic days differentially localize within the mitral cell layer (MCL) and extend their lateral dendrites to different sublayers of the external plexiform layer (EPL). Here, we examined the axonal projection patterns from the subpopulations of OB projection neurons that are determined by the timing of neurogenesis (neuronal birthdate) to understand the developmental origin of the diversity in olfactory pathways. We separately labeled early-generated and late-generated OB projection neurons using in utero electroporation performed at embryonic day (E)11 and E12, respectively, and quantitatively analyzed their axonal projection patterns in the whole mouse brain using high-resolution 3D imaging. In this study, we demonstrate that the axonal projection of late-generated OB projection neurons is restricted to the anterior portion of the olfactory cortex while those of the early-generated OB projection neurons innervate the entire olfactory cortex. Our results suggest that the late-generated mitral cells do not extend their axons to the posterior regions of the olfactory cortex. Therefore, the mitral cells having different birthdates differ, not only in cell body location and dendritic projections within the OB, but also in their axonal projection pattern to the olfactory cortex.


Assuntos
Bulbo Olfatório , Condutos Olfatórios , Animais , Interneurônios , Camundongos , Neurogênese , Neurônios
9.
Nat Commun ; 11(1): 1885, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313029

RESUMO

The oxytocin receptor (OTR) plays critical roles in social behavior development. Despite its significance, brain-wide quantitative understanding of OTR expression remains limited in postnatally developing brains. Here, we develop postnatal 3D template brains to register whole brain images with cellular resolution to systematically quantify OTR cell densities. We utilize fluorescent reporter mice (Otrvenus/+) and find that cortical regions show temporally and spatially heterogeneous patterns with transient postnatal OTR expression without cell death. Cortical OTR cells are largely glutamatergic neurons with the exception of cells in layer 6b. Subcortical regions show similar temporal regulation except the hypothalamus and two hypothalamic nuclei display sexually dimorphic OTR expression. Lack of OTR expression correlates with reduced dendritic spine densities in selected cortical regions of developing brains. Lastly, we create a website to visualize our high-resolution imaging data. In summary, our research provides a comprehensive resource for postnatal OTR expression in the mouse brain.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Regulação para Baixo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Sistema Nervoso/crescimento & desenvolvimento , Neurônios/metabolismo , Ocitocina/metabolismo , Caracteres Sexuais
10.
J Neurosci ; 40(4): 743-768, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31811030

RESUMO

Within the basal ganglia circuit, the external globus pallidus (GPe) is critically involved in motor control. Aside from Foxp2+ neurons and ChAT+ neurons that have been established as unique neuron types, there is little consensus on the classification of GPe neurons. Properties of the remaining neuron types are poorly defined. In this study, we leverage new mouse lines, viral tools, and molecular markers to better define GPe neuron subtypes. We found that Sox6 represents a novel, defining marker for GPe neuron subtypes. Lhx6+ neurons that lack the expression of Sox6 were devoid of both parvalbumin and Npas1. This result confirms previous assertions of the existence of a unique Lhx6+ population. Neurons that arise from the Dbx1+ lineage were similarly abundant in the GPe and displayed a heterogeneous makeup. Importantly, tracing experiments revealed that Npas1+-Nkx2.1+ neurons represent the principal noncholinergic, cortically-projecting neurons. In other words, they form the pallido-cortical arm of the cortico-pallido-cortical loop. Our data further show that pyramidal-tract neurons in the cortex collateralized within the GPe, forming a closed-loop system between the two brain structures. Overall, our findings reconcile some of the discrepancies that arose from differences in techniques or the reliance on preexisting tools. Although spatial distribution and electrophysiological properties of GPe neurons reaffirm the diversification of GPe subtypes, statistical analyses strongly support the notion that these neuron subtypes can be categorized under the two principal neuron classes: PV+ neurons and Npas1+ neurons.SIGNIFICANCE STATEMENT The poor understanding of the neuronal composition in the external globus pallidus (GPe) undermines our ability to interrogate its precise behavioral and disease involvements. In this study, 12 different genetic crosses were used, hundreds of neurons were electrophysiologically characterized, and >100,000 neurons were histologically- and/or anatomically-profiled. Our current study further establishes the segregation of GPe neuron classes and illustrates the complexity of GPe neurons in adult mice. Our results support the idea that Npas1+-Nkx2.1+ neurons are a distinct GPe neuron subclass. By providing a detailed analysis of the organization of the cortico-pallidal-cortical projection, our findings establish the cellular and circuit substrates that can be important for motor function and dysfunction.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Córtex Cerebral/metabolismo , Globo Pálido/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Fator Nuclear 1 de Tireoide/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Vias Neurais/metabolismo , Fator Nuclear 1 de Tireoide/genética
11.
Nat Commun ; 10(1): 5067, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31699990

RESUMO

Anatomical atlases in standard coordinates are necessary for the interpretation and integration of research findings in a common spatial context. However, the two most-used mouse brain atlases, the Franklin-Paxinos (FP) and the common coordinate framework (CCF) from the Allen Institute for Brain Science, have accumulated inconsistencies in anatomical delineations and nomenclature, creating confusion among neuroscientists. To overcome these issues, we adopt here the FP labels into the CCF to merge the labels in the single atlas framework. We use cell type-specific transgenic mice and an MRI atlas to adjust and further segment our labels. Moreover, detailed segmentations are added to the dorsal striatum using cortico-striatal connectivity data. Lastly, we digitize our anatomical labels based on the Allen ontology, create a web-interface for visualization, and provide tools for comprehensive comparisons between the CCF and FP labels. Our open-source labels signify a key step towards a unified mouse brain atlas.


Assuntos
Atlas como Assunto , Encéfalo/anatomia & histologia , Animais , Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Camundongos , Camundongos Transgênicos , Terminologia como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...